
J. Fluid Mcch. (1964), wol. 20, part 1, pp.  1-33 

Printed in Great Britain 
1 

On the swimming of a flexible plate of arbitrary 
finite thickness 

By J .  P.  ULDRICKt AND J .  SIEKMANN 
Advanced Mechanics Research Section, College of Engineering, 

University of Florida, Gainesville, Florida, U.S.A. 

(Received 4 November 1963) 

This paper studies the effect of profile thickness on the propulsive forces generated 
by the swimming of a two-dimensional fish. Comparison of numerical calculations 
with reported experimental data shows good agreement and demonstrates a de- 
crease of thrust with increasing thickness. Previous two-dimensional linearized 
theories on fish propulsion dealing with the motion of an infinitesimally thin 
hydrofoil are included in the present contribution as special cases. 

1. Introduction 
The swimming of sea animals as simulated by an infinitely thin two-dimen- 

sional waving plate has been discussed recently by several authors. Of particular 
interest to this investigation are the works of Lighthill (1960a, b ) ,  Smith & 
Stone (1961), Wu (1961, 1962), Kelly (1961), Siekmann (1962, 1963), Bonthron 
& Fejer (1962) and Siekmann & Pao (1964). 

The present paper treats the case in which the thickness of the two-dimensional 
fish is taken into consideration in calculating the forces generated by the 
swimming motion of the fish. 

2. Statement of the problem 
Consider a flexible solid plate of constant depth (chord), of infinite length 

(span), and of arbitrary finite thickness (profile) immersed in an inviscid in- 
compressible fluid in an otherwise uniform flow of constant velocity U in the 
direction of the positive x-axis of a right-handed Cartesian co-ordinate system. 
The fluid occupies the entire infinitely extended space. The assumption of 
infinite span and finite chord implies that the flow field around the plate can be 
treated as two-dimensional. The pIate or hydrofoil which simulates the motion 
of a fish is supposed t o  execute a perturbation motion of small amplitude in the 
transverse direction, i.e. the propulsion of the fish will be generated by small 
lateral displacements of its body. The configuration of the plate when there is no 
fluctuation is assumed to be symmetric with respect to the chord as shown in 
figure 1. Henceforth, this shape will be identified as the stretched-straight con- 
figuration or the base profile. The flow field around the stretched-straight con- 
figuration will be referred to as the base flow field. Shown in figure 2 is a position 
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3 J .  P. Uldrick and J .  Siekmann 

of the hydrofoil a t  a certain instant during flapping. In  order to approximate the 
shape of a fish with sugcient accuracy a model with a rounded nose and a sharp 
tail will be employed. 

With the (2, y)-rectangular co-ordinate system fixed in the plate the mean 
camber line is given at  any time t by 

Ym = W , t )  = Hy,(x,t)+yl(x,f)l (XI, < x 6 XT) ,  

where yu and yl are the ordinates of the upper and lower surfaces of the plate 
respectively, and x, and xT are the leading and trailing edge projections on the 
x-axis, respectively. The function h(x,t) will be referred to as the flapping 
function. 

+ X L  - - - 4 - - - X T 4  

FIGURE 1. Stretched-straight configuration of the fish. 

t Y  

FIGURE 2.  Displaced configuration of the fish. 

Obviously, as a result of the displacement of the plate, the velocities of fluid 
particles on the upper and lower surface a t  the same x-co-ordinate will have 
different magnitudes. This velocity difference gives rise to a corresponding pres- 
sure difference and, as a consequence, there results a net unsteady hydrodynamic 
force which depends on the displacement and the rate of displacement of the 
plate. The component of this force along the x-axis will result in either a drag 
(directed in the positive z-axis) or a thrust (directed in the negative x-axis) for 
the fish. 

The thrust is assumed to be generated by displacements forming a train of 
travelling waves of small amplitude which pass down the body of the fish from 
the head (leading edge) to the tail (trailing edge). The envelope of these waves 
varies arbitrarily along the length of the fish. We take the amplitude of these 
displacement waves to be a harmonic function of time. The magnitude of the 
thrust depends on the propagation velocity of these waves. 

In  the following the general theory for a flexible thick body undergoing pre- 
assigned undulations is developed on the basis of the complex velocity potential 
method. The body profile of the stretched-straight configuration in the physical 
plane is mapped by a suitable transformation into a circle and the unsteady 
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boundary conditions are satisfied by a source distribution on the circle. The 
problem is linearized by assuming a small unsteady perturbation theory. Due 
to the presence of the sharp trailing edge, the velocity induced a t  the tail by the 
source distribution possesses a singularity in the physical plane. This singu- 
larity is removed by introducing a fluctuating vortex distribution along the wake 
streamline of the steady base flow, such that the induced velocities of the source 
and vortex distributions combined vanish at the tail. With that, the so-calked 
Kutta condition of a smooth attached flow with finite velocity at  a sharp trailing 
edge is fulfilled. From the base flow potential, the source potential, and the 
vortex potential the pressure distribution on the base profile is determined 
by means of the Bernoulli equation for unsteady potential flow. With the 
pressure distribution known, the hydrodynamic forces acting on the hydrofoil 
can be calculated. 

The thickness enters the problem through the mapping function in the form of 
a small thickness parameter. Finally, in computing the forces acting on the plate 
it was found to be convenient to linearize all functions with respect to the thick- 
ness parameter. 

3. Mathematical formulation 

compressible fluid are the continuity equation, 
The equations governing the two-dimensional motion of an inviscid and in- 

div v = au/ax + avjay = 0, 
and the Euler equation, 

(3.1) 

(3.3) 

In these equations we denote the velocity vector of a fluid particle near the 
profile by 

where u and v are the perturbation velocities due to the deformation of the 
hydrofoil, p is the mass density and p the hydrodynamic pressure. 

In  the region of the flow field where the flow is irrotational we have the 
additional condition curl = avjax- au/ay = 0. 

This means that in this domain there exists a scalar point function @(x,  y ,  t ) ,  
called the (perturbation) velocity potential, which is defined by 

v = (U+U(GY,t) ,  v ( x , y J ) ) ,  

(3 .3)  

= a a p x ,  v = a q a y .  (3.4) 

Substituting equation (3.4) into the continuity equation leads to the Laplace 
equation for the velocity potential 

v w  = a2@/ax2+ aZqay2 = 0. 

Now the continuity equation can be integrated by introducing a stream function 
Y ( x ,  y ,  t ) ,  which is given by 

u = avyay = a q a x ,  = - a ~ / a x  = acD/ay. (3.5) 
1-2 
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The equations in (3.5) are the familiar Cauchy-Riemann differential equations 
defining an analytic function, the complex velocity potential F(z,  t )  = <D + iY 
of the complex variable z = x+iy. From this function, the conjugate complex 
velocity w(z, t )  = u(x,  y, t )  + iw(x, y, t )  can be found for any time t as 

~ ____ 
W ( Z ,  t )  = aPpZ = F’(x, t ) ,  (3.6) 

where the bar denotes the complex conjugate and the prime generally differen- 
tiation with respect to the independent complex variable. Hence, P(x, t )  
completely determines the flow field. 

Since it is a well-known fact in the theory of complex variables that an analytic 
function preserves its analyticity under a conformal transformation of co- 
ordinates, we determine the complex velocity potential of a flow field surrounding 
an infinite circular cylinder and transform this flow field into the flow field 
surrounding the ‘fish ’. 

FIGURE 3. General profile configuration. 

FIGURE 4. Circle plane for general profile configuration. 

Let x = f ( < )  be a conformal mapping of the exterior of a unit circle 9 in the 
5 = < + iy plane to the exterior of the profile f in the x = II: + iy plane, as shown 
in figures 3 and 4. The only limitation to be imposed on this function is that a t  
a large distance from the origin the flow in the two planes differs at  most by a 
constant, i.e. 

Quantities in the 5-plane are denoted by a circumflex. The factor & in the fore- 
going equation is selected such that the chord of the base profile will be approxi- 
mately two units. 

As a model for the fish, it is reasonable to require that the profile has a rounded 
leading edge and a sharp trailing edge and that it be symmetric when in the 
stretched-straight configuration. For this basic configuration we wish to use a 
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symmetric Joukowski profile. This configuration can be mapped from a unit 
circle by the transformation 

- 

I 

- 1  

€ =  010 

(3.7) 
m 

n=l 

, - x  7- 4-1 -- 002 

where s is a small non-negative quantity (0 6 e < l), respresenting a measure for 
the thickness of the fish. The thickness d of the fish at  its mid-chord is approxi- 
mately 2s. Since the length 1 of the fish is approximately two, the thickness ratio 

Y 
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I \  
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FIGURE 5 .  Stretched-straight configuration for several thickness parameters. 

dll  at the mid-chord is of the order s. In particular 6 = ei8 is the boundary of the 
circle and z = f (ei") is the boundary of the stretched-straight fish. Because of the 
fact that 

the function f(5) satisfies the physical requirement of a sharp trailing edge. 
Figure 5 shows the configuration of the base profile for several thickness para- 
meters. The numerical values for the co-ordinates were calculated from equa- 
tion (3.7) and are tabulated in table l .  

For the sake of application of the general theory later on we wish to investigate 
only profiles of small finite thickness and, as such, we shall assume that only the 
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which follows from the Euler equation (3.2) if the flow field is irrotational. Here 
q 2  denotes the square of the velocity and m(t) an arbitrary function of time which 
can be determined by the flow conditions at infinity. 

Calculating 

we arrive at  

a 3  aF‘ 
2 - -  - 

- ax ax  jz=&)7 

+2Rei [Zz] -- +--+----- @ a& Z2 ap2 (4.2) ax ax ax ax 

where Rei indicates the ‘real part’ operator with respect to the space imaginary 
unit i. The velocity potential @ on the base profile follows from 

@ = Rei [F(z ,  t)]z=f(ei4,. (4.3) 

According to small unsteady perturbation theory, the last three terms in equa- 
tion (4.2) may be neglected, since they are of second order in the perturbation 
velocities. Combining now equations (4.2) and (4.3) with the Bernoulli equa- 
tion (4. l) and eliminating terms independent of time, the unsteady pressure 
distribution a t  a point P on the base profile becomes 

\ 
I z= f ( e w ’  

[F,(z, t )  +F2(x, t ) ]  
1 
P 
-p(x ,  t )  = - Rei 

which yields finally, in terms of the argument I?: 

5. The complex velocity potentials Fo and Fl 
Consider the configuration of the profile as shown in figure 3. Since the map- 

ping function for the profile is assumed to be known, it is only necessary to calcu- 
late the general potential for a flow around a circle and to map this flow field 
onto the profile, This complex potential can be written as 

where f, denotes a circulation term. Then the conjugate velocity in the g-plane 
is given by 

so that on the circle the velocity becomes 
if 

r&jo(ei+) = $ u(1- e+2i+) - -0 ei8. 
27r 
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Any point P on the profile in the z-plane is mapped into the point p on the circle 
in the c-plane by the transformation 

z = f(ei"). 

Now let us assume that the position of the downstream stagnation point 
Po E f (figure 3) will be transformed into la,, E $? (figure 4) by means of 

[ = eir. 

Since the velocity vanishes at [ = e i T ,  the circulation can be found to be 
A 

I', = -2nUsinr. 

t Y  

(z  = x + ;Y plane) 
FIGURE 6. Profile plane (2-plane). 

(5=5+ir]plane) 
FIGURE 7. Circle plane (b-plane). 

For a sharp trailing edge the Kutta condition requires that the flow leaves the 
profile smoothly; therefore, in order to satisfy this condition the downstream 
stagnation point must be located at, the sharp tail. For the symmetric base profile 
f*, as shown in figure 6, the sharp tail coincides with the x-axis and the down- 
stream stagnation point Pt E f* is mapped on the point pg E $?*, which lies on the 
.$-axis in the c-plane (figure 7). Thus, for this case, the circulation vanishes. 

The complex velocity potential satisfying the steady-state boundary condition 
is 

In  order to determine the potential Fl satisfying the unsteady boundary con- 
dition, we must first derive a relationship between the velocity of a point on the 
surface of the profile and the velocity of a fluid particle adjacent to this point. To 

(5.1) Po(<) = pY(c+c-:-"). 
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accomplish this, we let the unsteady displacement of a point P on the profile 
be denoted by D(z, t ) .  Then the position of this point a t  any time t is 

z p  = zop +D(z,  t ) ,  (5.3) 
where zop is the co-ordinate of the point on the stretched-straight configuration. 

Now the boundary condition is given by the fact that the surface of the profile 
is a material impenetrable body, i.e. the velocity of a fluid particle in a direct4on 
normal to the boundary must be equal to the velocity of the corresponding point 
on the boundary in this direction. Therefore, we take the material derivative of 

dz,, aD aD dz  equation (5.2) to obtain 

where dzldt is the velocity of the fluid particle at  this point. Since the unsteady 
perturbation velocity is small, we make the hypothesis that the velocity of a 
fluid particle near the contour differs very little from the base flow velocity and 
thus can be approximated by the steady-state velocity at  the boundary. This 
assumption seems reasonable a t  almost all points of the contour except in a small 
region around the stagnation points. Hence, the linearized unsteady boundary 
condition becomes 

-+--, (5 .3 )  dt at ax at 
_ _ -  - 

Next, the complex unit tangent vector t to the boundary is given by 

and hence the complex unit normal vector n in an outward direction follows by 
a clockwise rotation about a right angle, yielding 

n = -it .  (5.6) 

The velocity q, of a point P on the surface of the profile in the normal direction 
is simply given by the scalar product of dz,/dt and n ;  thus we have 

7 d z p  
q,(9, t )  = Rei ( - z t  =) . (5.7) 

Therefore, the corresponding velocity on the circle in the radial direction can 
be found to be 

or 

- 

Im, indicates the ‘imaginary part’ operator with respect to the space imaginary 
unit i. Now the undulatory motion of the profile is described by the flapping 
function h(x , t ) .  Here the x-co-ordinate refers to the base configuration. For a 
physical representation of fish swimming, this function is taken to be imaginary 
in the space variables, i.e. the lateral displacement is perpendicular to the real 
axis. Therefore, we arrive at  the displacement function 

D(2,t) = ih(x,t) (xL < x Q xT). (5.9) 
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As pointed out earlier the propulsion is generated by a train of waves progressing 
astern with an amplitude depending on the spatial chord variable x. From 
photographs made of swimming salmonoid fish it seems to be reasonable to 
assume that generally the amplitude has its smallest value a t  the head and its 
largest value a t  the tail. We therefore postulate a displacement function of 
the form 

where a designates the wave number, w the circle frequency (which is taken to be 
positive throughout this work), A, an arbitrary phase angle, and H ( x )  the arbi- 
trary amplitude of the envelope of the waves. It is convenient to subsume this 
motion under the most general form of the simple harmonic motion 

D(z, t )  = iH*(x)  ejW', (5.11) 

with j = ( -  l)* as the imaginary unit for the time variable t .  It is not to be 
confused with the spatial imaginary unit i .  Eventually, the real part in the time 
imaginary unit must be taken for physical interpretation. 

Referring to equation (3.7) the x and y co-ordinates of point P on the base 
profile are given by 

(5.10) D(z ,  t )  = i H ( x )  cos (ax- ot + A,), 

1 
I 

a, 

x = - cos8+ t . ~ - ~ ( l - s ) ~ c o s n 9  , 
2 [ n=l  

2 [ n=l  

m 

y = - sin8- 2 en--l( 1 - e)2sinn8 . and 

Since x is an even function of 9 we can conclude that any function of x is even 
in 9, hence 

and also 

Therewith we can express the amplitude function HT(9)  in a Fourier cosine series 

h(x, t )  = h[x(9),  t]  = h[z( -a), t ]  = hl(9, t ) ,  
H*(x).= H*[z(9)] = H*[x( -9)] = HT(9) .  

where B ,  = L/nH:(9)cosnAdB (n 2 0). 
n o  

Now by substituting equation (5.11) into equation (5.4) 

(5.12) 

(5.13) 

we obtain first of all 

Inserting this expression into equation (5.8) yields for the radial velocity (i, 
on the circle in the <-plane 

the foregoing equation can be written in the compact form 

&(9, t )  = UG(9)  eiwt. (5.14) 
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With the help of equations (3.7) and (5.1), evaluated for x = f ( e i a ) ,  the function 
G(9)  can be put into the more convenient form 

where k = wjU is the reduced frequency referred to the radius of the circle or, 
approximately, the half chord of the base profile. It can be shown that G18) 
is an odd function. Hence, we write it in the form 

m 
I 

G(8) = 2 C P,, sin n$, 
n=l 

where the Fourier coefficients are given by 

P, = 1 J m  G(9) sin n9d8. 
n o  

(5.16) 

(5.17) 

We satisfy the unsteady boundary condition for the radial velocity given by 
equation (5.14) by a source distribution along the circumference of the circle in 

11 

FIGURE S. Circle plane with point source. 

the &plane or a corresponding source distribution along the surface of the sym- 
metric profile. 

Let the strength of this source distribution per unit arc length in the <-plane 
be denoted by F(9, t ) .  This source distribution can be related, in an obvious way, 
to the radial velocity @,(a, t )  by 

Then it is readily seen that the potential at  a point 5 due to a point source of 
strength j?, located at c0, is given by 

Therefore, from figure 8, for the contribution to the total potential function 
pl(& t )  due to a point source at c0 = eip, we arrive at 

dP,(<,t) = (277-1,4cp,t)log(<-eiq)dcp, 

$(a, t )  = 24,(9, t ) .  

( 2 4 - l f ( 9 ,  t )  1% (<- <o). 

and the total potential at < due to all sources becomes 
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6. The complex velocity potential li2 
For arbitrary undulations of the profile, the tangential velocity induced by 

the sources will not, in general, be finite at the sharp trailing edge and, as a conse- 
quence, the Kutta condition is violated. As an extension to the theory of Theo- 
dorsen (1934), we introduce a continuous vortex sheet located along the wake 
streamline of the steady-state flow with a distribution of image counter-vortices 
distributed in the interior region of the symmetric profile. These vortices and 
counter-vortices are introduced in such a way that Kelvin’s theorem of total 
circulation is satisfied and that the net induced velocity on the boundary of the 
profile due to these vortices is tangent to the boundary. In  addition, Helm- 

FIGURE 9. Circle plane with vortex pair. 

holtz’s law of persistence of vortex strength following a fluid particle is applied 
to a vortex element moving with a velocity approximately equal to the local 
steady-state velocity of a particle of fluid along the streamline emanating from 
the sharp tail. Finally, Kutta’s condition is satisfied by requiring that the induced 
velocities due to the source potential and vortex potential combined vanish 
at  the tail, 

In  order to develop the potential function which satisfies all the above require- 
ments, we derive the potential function i?2(c, t )  arising from the associated vortex 
distribution in th%circle plane. Shown in figure 9 is a single pair of vortices with 
equal strengths dr-one located at 5 = Eo with a clockwise rotation which we 
take as positive, and the other located at the image point c = l/co inside the circle 
with a counter-clockwise rotation. Clearly, the velocity induced by this vortex 
pair on the boundary of the circle is in a tangential direction and thus the corre- 
sponding induced velocity in the physical plane is tangent to the boundary of the 
symmetric hydrofoil. Furthermore, the total circulation is preserved by the 
introduction of this vortex pair since both are of equal strength but have 



On the swimming of a thick jlexible plate 13 

different directions of rotation. The potential d P ,  at any point 5 due to this 
vortex pair is found to be 

h 

If we have a continuous vortex sheet of strength pu, the circulation strength d r  
of the above pair of vortices can be related to the vortex strength distribution by 

d r  = P,dC0. 
A 

Thus in the plane of the circle the complex velocity potential resulting from 
this vortex distribution is found to be 

where i t  is assumed that the unsteady motion has been going on for an infinite 
time. 

We can relate this potential in terms of the corresponding vortex distribution 
in the plane of the profile by referring to the relation 

?,(too, t )  = YW(X0, t )  dxo 

between the circulation distribution in the [-plane to the circulation distribution 
in the z-plane. Then from the mapping function z = f ( 5 )  it  follows that 

dxo = (df(tO)/d50) G o  = f'(50) dto, 

and hence the desired relation 

(6.3) 

We next apply Helmholtz's law of constancy of vortex strength following a 

(6.3) 
fluid particle, namely yw(xo, t )  = const., 

referred to a co-ordinate system moving with the particle of fluid. Therefore, 
the substantial derivative of yw is given by 

However, since the unsteady perturbations are harmonic in time the vortex 
distribution can be written as 

yui(xo, t )  = y w b 0 )  eiwt. 

9u l (50 )  = IJw(x0 = f ( 5 o ) )  = yoexp ( -jw, 

(6.5) 

From the last two equations we obtain after some straightforward calculations 

(6.6) 

where yo is a constant, and 0 is defined by 
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In  order to derive the preceding formula, equation (5.1) was employed. Combining 
these results we get finally 

Now, in order to satisfy the Kutta condition we require that the tangential velo- 
city on the circle vanishes at the downstream stagnation point which is located at 
5 = 1. This restriction implies that 

Substituting the trigonometric series for G( cp), given by equation (5.16), into 
equation 

and separating the real and imaginary part in the space imaginary unit i we 
obtain, by employing the well-known integrals 

sinncpdcp = 0 (n = 1 , 2 , 3 ,  ...), ksu”” 
%lo 1 2n sinncpsincp- dcp = 1 ( n =  1,2 ,3 ,  ...I 1-coscp 

and after a few steps, 

Further it follows from equation (6.8) that 

Combining equations (6.10) and (6.11) with equation (6.9) we see that 

iQ  - iy, P(jk; E )  = 0, 

where 

and 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

With that the constant yo can be expressed in terms of Q and P(jk; E ) ,  namely 

yo = - Q/P(jk; €1. 
Substituting this result for yo into equation (6.8), it  follows that 

Recall that Q can be determined from the boundary condition, i.e. i t  depends 
upon the displacement function, the steady-state velocity potential, and the 
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mapping function; and that P(jk; e) depends upon the mapping function and the 
reduced frequency. These functions and quantities are assumed to be known. 
Thus, the total complex velocity potential function 

&L t )  = &(C) + m, t )  + P2(L t )  (6.16) 

is known for any prescribed flapping function and thiclrness parameter. 

7. Pressure distribution resulting from source potential 
The unsteady pressure distribution resulting from the source potential can be 

found by inserting the source potential function (5.18) into the linearized 
Bernoulli equation. Thus, applying equation (4.4), this pressure becomes 

Combining equation (5.1) with this expression, performing the indicated dif- 
ferentiation, and observing that the Re, operator and the integral operator are 
interchangeable, we are led to the result that 

where IT = j o lU .  

be simplified to read 
After some algebraic and trigonometric manipulations, this last result can 

Recalling that G(y) is an odd function and that the integrand in equation (7.3) 
is periodic in 27~ this formula can be simplified in a straightforward manner to 

(7.4) 
Substituting the trigonometric series for G(rp) given by equation (5.16) into equa- 
tion (7.4) and performing the indicated integration, there follows, by using the 
relations " sin rp sin nrp 

drp = cosn9 

" 1-cos(9-rp) 2 log ~ - _ _  sin nrp drp = - - sin 129, l - cos (9+y)  n and 
the result 

To this must be added the pressure distribution resulting from the vortices in 
the fish's wake. 
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8. Pressure distribution resulting from vortex potential 
To determine the pressure distribution on the surface of the profile due to 

vortices in the wake, it is convenient to compute the pressure drI ,  due to a single 
vortex pair of equal strength and opposite orientation located at c0 and 
in the 5-plane or the corresponding points in the profile or z-plane. The complex 
velocity potential of this pair was found to be 

g -  t o  
271 5- t;l dP&, t )  = d? log __- . 

According to Helm@ltz’s law of persistence of vorticity following a fluid 
particle, the strength d r  is constant referred to a co-ordinate system moving with 
the fluid particle. Here it is assumed that the velocity of a fluid particle in the 
wake is equal to the steady-state local velocity, which is, of course, only approxi- 
mately true. The wake streamline coincides with the positive x-axis in the profile 
plane. Therefore a ax a t  a 

- (dF2) = 2 -O - (dF2) ,  at dt ax, ato (8.2) 

where x, is the co-ordinate of the vortex element in the profile plane. 
From equation (4.4) the unsteady pressure due to this vortex pair is 

___ ~ .- 

where 2 = F&O) = m t O ) / f ’ ( t o )  (8.4) 

is the local velocity of the vortex element d r  along the wake streamline in the 
profile plane. 

Combining equations (5.1) and (8.4) with equation (8.3) and performing the 
indicated operations leads to the result 

(8.5) 
To detezmine the effect of the entire wake vortex sheet, we replace the vortex 

A 

element d r  by a r  = $wato (8.6) 

and integrate over the entire wake. Thus, 

Employing the results as given by equations (6.5),  and (6.6) this last expression 
can be written as 
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Eliminating the constant yo by way of equation (6.12) the unsteady pressure 
as a result of the wake vortices becomes 

(8.9) 

Adding now equations (7.5) and (8.9) gives the desired unsteady pressure 
distribution as 

where the series for Q given by equation (6.13) has been employed. For the special 
case of a flat deformable plate of infinitesimal thickness, the parameter 6 vanishes 
and the equation (8.11) reduces to 

With some manipulations this can be expressed in identical form with that given 
by Siekmann (1962).  The function E ( k )  is the so-called Theodorsen function, 
defined by 

&$ e-ikxo dx, 
HpJ( k) 

= 8 4  +jW) H$Z'(k) +jH&Z'(k) 
- _______~ - E ( k )  = 

xo+l 
&qe- j kxodxo  

where HJ2)(k) and H$Z)(k) are Hankel functions of the second kind of order zero 
and one, respectively. 

9. Lift, moment and thrust 
Equation (8.11) expresses the unsteady pressure distribution along the surface 

of the profile, The forces acting on the profile can be found by integrating this 
pressure distribution along the contour f*  of the base profile. In complex nota- 
tion the force function is 

F'-iFu = - i f  I I (8 , t )dz , ,  (9.1) 
t *  

2 Fluid Mech. 20 
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Thus we obtain for the lift 

0 
(9.2) 

The moment about the origin of the x-plane due to the force elements acting 
on an arc element ds is given by 

dM = n(9,t) (xdx+ydy) = Re,(ITx,d5,) 

taken in the counter-clockwise sense. Thus the total moment is found to be 

It is to be noted that the equations for lift and moment neglect the change in 
shape of the profile since it is assumed that the pressure acts in a direction normal 
to the surface of the base profile. 

In  order to calculate the x-component of the resultant hydrodynamic force 
acting on the plate, the change in shape of the profile must be taken into con- 
sideration. As shown by Wu (1961) and Siekmann (1962), the important fact 
here is that non-linear terms are involved and, as such, there are mixed terms 
involving the time imaginary unit j. Therefore, the real part with respect to 
time imaginary unit must be taken for physical interpretation. The hydro- 
dynamic force in question can be determined from the equation 

d(Fx-iB!!) = -iIT($,t)dZp. 

Now for the differential dZp we obtain by applying equation (5.2) and (5.11) 
the expression 

(9.4) 

It is to be noted that the coefficients B, in equation (5.12) are generally com- 
plex in the time imaginary unit j. Thus, from equations (9.1) and (9.4), the x- 
component of the hydrodynamic force becomes 

Fx = Re,( -i/02rRej n(9,t) d9), (9.5) 

where Rej is the 'real part' operator with respect to the time imaginary unitj.  
A positive Fx will indicate a net drag. 

10. Application of the theory to a symmetric Joukowski profile with 
a linearized thickness parameter 

For profiles of small finite thickness, as are considered here, we linearize in the 
small thickness parameter all functions containing this parameter. 

First of all we want to calculate the 'downwash ' velocity for any given flapping 
function. The downwash velocity on the boundary of the circle is determined 
by equation (5.14). Then the corresponding downwash velocity on the base 
profile is given by 

9 ,̂(8, t )  
%L(9.> t )  = - e )  
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We recall that the function G(9) occurring in equation (5.14) is given by eyua- 
tion (5.15). Taking now the derivatives of equation (3.8) yields 

)I* f ’ (  i4 - 1 1 - e-2i9 + q e - 2 i 9  - e-3i4 e ) - 2 [  

Separating the real and imaginary parts and changing i to - i  the foregoing 
f ’ (e i4)  = $(vl + i l l2),  

equation becomes 

where 1’1 = 1 - cos 2 9  + 2e(cos 2 9  - cos 39), 

v2 = - sin 39 + 2 ~ (  sin 2 9  - sin 39).  

After some algebraic and trigonometric manipulations we find for [ j”(ei8) ] - l  the 
expression 

with 

113 + i v ,  [f’(eia)]-l  = 
2(1-  2 ~ )  sin28’ 

v3 = 1 - 2e cos9- (1 - 2 E )  cos 39, 
v4 = 2esin8-(1-2e)sin28. 

Quadratic terms in E have been neglected. Substituting now the corresponding 
formulae into equation (5.15) leads to 

S.-(v2 cos 9 - ill sin 8) HF(9) - 

which can be simplified to read 

G(9) = c~[( l -e)s in9+~ssin28]H~(9)+ l + E  26 cos9] H .  

(10.1) 

It is expedient at  this point to introduce a new function g ( 8 )  defined by 
G(9) sinni3 m 

g(9) = ~ - - 2 C P , - -  - A ,  + 2 2 A ,  cos n9, (10.2) 
sin9 sin9 n = l  

where the Fourier coefficients are related according to 

A,-l-A,+l = 2P, (n = 1,2 ,3 ,  ...). (10.3) 

Combining equations (10.1) and (10.2), it  follows that 

l + s  2e 1 dHT(9)  
sin9 d 8  +- 

(10.4) 
m sin n9 m 

- - 3  C nB,- - - Co + 2 2 Cn cosn8, (10.5) 1 dHT(S)  __ ___ - If we set 
s in9 d 9  s in9 n= 1 

where the recurrence relation for the Fourier coefficients is given by 

Cn-l - C,,, = - 2nB, (n 2 11, 
then with some straightforward calculations we get 

(10.6) 
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It should be noted that the trigonometric series in which the coefficients 
are the An’s is related to the downwash velocity on the surface of the profile, 
whereas the series containing the B,’s a i d  the Cn)s are associated with the flap- 
ping and the displacement of the fish, respectively. Hence, equation (10.7) 
relates the downwash velocity in terms of the displacement and displacement rate 
of the fish. 

11. Pressure distribution approximation 
In  order to determine the pressure distribution we first approximate the diffi- 

cult wake effect as contained in the function T ( 8 , j k ;  E )  given by equation (8.10). 
It is seen that the velocity of a fluid particle emanating from the sharp tail is 
reduced somewhat from the free stream velocity. This slowing-up effect is greatest 
near the tail. Thus, while the wake vortices far downstream convect with a 
velocity U ,  those near the trailing edge connect with a smaller velocity. Since 
such near vortices are likely to have a more pronounced effect on the body, a 
reasonable approximate way of dealing with them is to replace the potential 
3, as given in equation (6.15) by what it would be for a thin plate hydrofoil 
immersed in a stream of slightly reduced velocity. Accordingly, for determining 
the effect of the wake on the pressure distribution, we represent the profile by 
its mean chord line immersed in a uniform flow with a velocity SU, where S 
represents the slowing-up effect due to thickness. The parameter 6 is related to 
the thickness parameter 6. For the special case of vanishing thickness (e  = 0) 
we have S = 1. We determine this relationship by requiring that the time- 
dependent pressure vanishes at the tail for all time. 

From equation (3.8) it follows that the actual chord length of the stretched- 
straight profile is given by 

This actual chord line can be mapped on to the unit circle by the transformation 

I X T - - X L \  = 2 ( l - 6 ) .  

(11.1) 

where the values of h and p are found to be 

h = i(l-€), p = (1-€)-1(2-€)-2.  

In  this flow field the steady-state potential becomes 

P,(C) = &SU(5+5-;-1). (11.3) 

It further turns out from equation (6.7) that 

(11.3) 

In establishing this formula the relation 

f ’ ( 6 o )  = 41-61T2) 

resulting from equation (10.1) was used. We now introduce a variable x defined by 

6, = ex ; (11.4) 
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dF,(X)/dX = &(x) = Sue-x sinhx, 

df(x)/dx = f ‘(x) = 2he-xsinhx, 

--__ __ with this we obtain 

and 0 = 4h’S-l (Gosh x - 1). 
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Substituting the above results into equation (8.10) we obtain the expression 
for the wake function T ( 9 , j k ;  6 )  in terms of the new variable as 

where A = 4h2/6. 

After some straightforward calculations, this expression can be written as 

cr s,” (cosh x i- cos 9) e-iAk cash x dx 
T(9,jE; e) = ___ (11.6) IOm (cash x + 1) e-iAkcosh x dx . A sin 

Now from the theory of Bessel functions (Watson 1948) we know that 

(11.7) 

where K n ( z )  is the nth-order Bessel function of the second kind. This relation is 
valid if IargzJ < &r, which requires that Rejz > 0. 

Thus, combining equations (11.6) and (11.7) we are led to the result 

The ratio containing the Bessel functions in the above expression is the Theo- 
dorsen function E(Alc) (Theodorsen 1934). Employing the relation (Watson 
1948) 

where H‘,2)(k) are Hankel functions of the second kind and of order n, it follows 

K,(jAk) = i ~ j - ~ - ~ H ‘ , 2 ’ ( R k ) ,  (11.9) 

that 

In the development of equation (1 1.10) we imposed the condition that 

Rejz = Rej(jAk) > 0. 

However, according to Luke & Dengler (1951) this equation has no need for such 
a restriction and therefore, by analytic continuation, one can argue that this 
formula holds for all Rej(jAk). In  the present case we have Rej(jAk) = 0. 
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Combining equations (11.8) through (11.10) with equation (8.11), the un- 
steady pressure distribution becomes 

[ E ( A ~ ) + ( ~ - O ( A ~ ) ) C O S ~ ]  . (11 .11 )  
1 +- A sin 8 I 

From equation (3.7) it  follows that 

After some straightforward calculations and linearizing in e, equation (1 1.12) 
reduces to 

(11.13) 

Combining equation (11.11) and (11.13)) we obtain 

sin n8 1 - 4~ cos 8 cos n 8  
II(9,t) = 2pU2eiwt 

n=l  1- 2e sin8 
1 

f- [@(Ak)+( l -  A sin 8 E(Ak))cos.4.] . (11.14) I 
It can be seen from this expression that the unsteady pressure possesses a 

singularity at the tail where 8 = 0 and a t  the nose where 8 = n-. The singularity 
a t  the tail is removed by satisfying the condition 

(1 1.15) 

This can be satisfied for all time only if 

(1 - 2~)-1(1-  4e) = A-l. 

The singularity a t  9 = 7~ produces a concentrated force at the nose, the so- 
called suction force arrived at in airfoil theory, which must be added to the hydro- 
dynamic force computed by integrating the pressure distribution around the 
profile. 

pressure distribution in a Glauert trigonometric series as 
For the subsequent calculations, i t  is convenient to express the unsteady 

(1  1.16) 1 m 

II(8,t) = pU2eiwt a,tan&8+2 2 ansinn8 ( n=l 

where the coefficients after some laborious manipulations are found to be 

(1 1.16 CI) J 
a, = ro - 2s(r0 + 2A1 - 2A,), 

+2C(An--n-1-A,+1) (n B 1)) a, = A ,  + &T 4 - 1  - An+1 
n 

with 
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12. Calculation of the lift and moment 

lated from equation (9.2) as 
With the pressure distribution known (equation (11.16)), the lift can be calcu- 

L = Rej/oznrI(9,t)df, 

where thedifferentialdfmustbefoundfrom the mapping function (equation (3.8)).  
We Obtain df = [ - ( 1  - e) sin 8 - 6 sin 29  - ie(cos 9 - cos ZS)] d8. 

Since II(8, t )  is real with respect to the space imaginary unit i, the operator Re, 
and the integral operator commute. Thus, carrying out the indicated operation 
we arrive at L = - 2np U2ejul[( 1 - 2e) a, + (1  - e) a, + ea,], 

or by means of equations (1 1.16), 

L = -27rpU2efd((A,+A,) ( 1 - 4 e ) ~ ( R k ) - A 1 + 4 e A 0  

1 - 2s 
A,-  A 

2 
+ ( T - p 2 -  2s ___ 

For the case of a flat plate of zero thickness (6 = 0) ,  the lift becomes 

where A = 1. This is in agreement with the result of Siekmann (1962). In  making 
a comparison between this work and that of Siekmann it must be observed that 

A ,  = ( -  1)”A2, 

where the coefficients A: correspond to Siekmann’s coefficients for the ‘down- 
wash’. The difference in signs arises from the fact that Siekmann employs a 
pressure difference across the plate of Ap = (p--p+) to determine the lift, 
whereas in this work the analogous pressure difference is Ap = (p f -p - ) .  

The moment about the origin of the forces acting on the profile is given, accord- 
ing to equation (9.3) by 

M = Re,IOzn II(8, t ) f (e“)  df, 

where the moment is positive if counter-clockwise (nose down). 

after linearizing the result in e and straightforward calculations, 
Combining equation (3.7) with the expression for the differential clf yields, 

Re, [ f ( e i s )  df] = &[ - (1 - 2e) sin 2 9  + 3e cos 9 sin 2 9  - E sin 9 cos 291 d9. 

Multiplication by II(8, t )  and integration then leads t o  

M = 7rpU2eiul[( 1 - e) a,- (1 - 2e) a2 + €(al + a,)], 
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or, in terms of the downwash velocity, the moment is finally found to be 

J .  P .  Uldrick and J .  Siekinann 

M = ?rpu2ej. t((l-c) [ r , - 2 e ( r , + 2 ~ , - 2 . i , ) l  

1 + 24-42 - A1 - - 4 3 )  4 

For the special case of a flat plate with vanishing thickness, the moment about 
the centre of the plate reduces to 

M = ? r p U 2 e ~ w t [ ( A , + A l ) O ( k ) - A l - A 2 - ~ v ( A l - A , ) ] .  

This result is again in agreement with Siekmann (1962, equation (4.8)). 

13. Calculation of the thrust 
The net thrust or drag is given by the total hydrodynamic force acting on the 

plate in the z-direction. The z-component of the hydrodynamic force imposed 
on the profile by the pressure distribution is given by equation (9 .5) .  Due to the 
singularity in the pressure at the nose, the force as given by equation (9 .5 )  
must be supplemented by the so-called suction force which is concentrated a t  the 
nose. 

It is convenient for calculation purposes to decompose the thrust into three 
parts as follows Fz = F$ + Fg) + Pf) ,  

where 3:) = Rei [ - iJO2" Rej II(9, t )  

F f )  = Rei [ - iIO2" Rej II (9, t )  

and Fg) is the suction force. The term FF) represents the streamwise force com- 
puted by integrating the pressure distribution along the contour E* defined by the 
stretched-straight configuration of the profile, whereas the term Fg) represents 
the streamwise force computed by considering the displacement and the rate of 
displacement of the profile. 

We define the following quantities: 

ro = 

an = 
- 
- 

A ,  = 

B, = 
- 
- c =  n 

where for example 
2; = a; cos wt - a: sin wt, 

6: = a: cos wt + a; sin wt, 
etc. 
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Employing these results and equation (11.16), it  follows first of all that 

1 00 

RejII(9,t) = p U 2  &tan$9+2 C (ZAsinn9 . 
n = l  

Also from equations (5.12) and (1 3.1 d )  i t  can be shown that 

(13.2) 

(13.3) 

This last expression can be written in a more convenient form as 

(13.4) 
- sinn9 

- 2  nBA- 
n=l s in9 

where the relationships between the BA and the CA are given in equation (10.6). 
Substituting equation (13.2) into the expression for Fg) and applying the 

relation 
sin n9  cos m9 d 9  = 0 

leads to the result that 

where the integral has to be taken as a Cauchy principal value. It can be shown 
that this integral vanishes, hence 3'g) = 0. 

Next by substituting equations (13.2), (13.3) and (13.4) into the equation for 
Fg) and employing the integrals 

and 

we obtain 

n-, m = n, 
0,  m += n, 

sin m9 sin n9 d9  = 

But, according to equation (10.6), 
00 

- 2 z ( - l)n+lnBk = C; - ci. 
n = l  

Inserting this expression into equation (13.5) yields 

(13.6) 

To the above force must be added the concentrated force at  the nose. Since 
the leading edge suction force arises from the singular pressure at the nose, it is 
necessary for its determination to take into account the non-linear terms in the 
expression for the pressure distribution in the neighbourhood of the leading edge. 
This can be accomplished most readily by considering the behaviour of the velo- 
city as the leading edge is approached and by then employing the Blasius formula 

I 00 

Fg) = -2npU2 &(cL--ci)-2 2 niiABA . [ n = l  
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to a small circle of radius 8, surrounding the nose. The velocity at the leading 
edge can be computed from the complex velocity potential by equation (3.9) 
as 

where 

lim w(z, t )  = lim (aF/a<) (dcldz), 
Z - W L  {+-l 

aF/ac = S(5, t )  

(13.7) 

is the complex velocity in the [-plane. Since 22. is bounded at the leading edge, 
this last expression can be written as 

lirn w(z, t )  = a( - 1, t )  lim dc/dz. 
Z + X L  g+-1 

But, from equation (3.7) it  follows that 

(13.8) 

5 - E  = X - - l €  2 + [ ( z  - Q€)2 + ( 1 - 4 2 1 4  (13.9) 

and, as 5 +- 1, z -+ - 1 ++e. Differentiation of equation (13.9) and carrying out 
the limiting process 5 + - 1 yields 

lim dc/dz = co. 

Prom these results it is seen that the velocity in the physical plane asymptotically 
approaches an infinite value as 

5+-1 

lirn ~ ( 2 ,  t )  = 8( - 1, t )  lirn 
Z-0 

where z = x + 1 - $€. 

Now, Blasius’s formula for the case of unsteady flow can be written as 

(13.10) 

(13.11) 

Here the contour f, is taken to be a small circle around the leading edge with a 
radius So. Since the velocity potential CD and its derivative a@/at are bounded at 
the leading edge, the last contour integral in equation (13.11) vanishes. 

Thus, combining equations (13.10) and (13.11), we obtain 

A small circle around the nose can be written in complex notation as 

Therefore 

(13.12) 

(13.13) 

(13.14) 

Hence, from these results we find that 

FL3) - i$’F) = - 1 z V J ( 1 - s )  p ( - 1 , t p .  (13.15) 

Thus, F f )  vanishes and FS) clearly represents a thrust term, i.e. a force directed 
along the negative x-axis. 

To complete the calculation of the suction force, the complex velocity 
S( - 1, t )  in the c-plane must be found from the complex velocity potential 
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P = P,, + Pl + 9,. This can be done by considering separately the contributions 
to this velocity by each potential function and adding the results. 

Thus, from equation’(5.1) we obtain 

Substituting the trigonometric series for G(rp) and employing the integrals 

2m sin nrp sin cp 
- drp = ( -  l ) n + l  (n 2 I), 

a 

n=l 

h leads to 

By applying the recurrence formula (10.3) we find that 

a1( - 1,t) = - iUeiwL(A,-A, ) .  

w1(--1,t) = -2iUeiwt 2 (-l)n+lP,. 

(13.16) 

The velocity 8, due to F2 can be found from equation (6.15) to be 

Inserting the expressing for P(jk; 6 )  and substituting the approximate expres- 
sions derived earlier we find 

h;(jRk) -K  0 ( J-._ ‘Rk) 
K,(jRk) + K,,(jRk) * 

a,( - 1 , t )  = iQ 

Combining now the formula for Q (equation 6.13) and the recurrence relation 
given by equation (10.3) it follows after some simplifications that 

a,( - 1 , t )  = -iUeiot(A,,+Al) [ZK(Rk)- 11. (13.17) 

Hence according to equations (13.16) and (13.17) the velocity at the leading 
edge in the {-plane is 

a( - 1, t )  = - 2 i U e i W t [ ( A , + A , ) ~ ( A k ) - A l ] .  

It then follows that the suction force becomes 

2-q) = - 27rpU2( 1 - 6 )  (FA),, 

FA = (A,, + A,) 8 (Rk)  - (A: + 2;) @ (Ak) - A;. 
(13.18) 

where 

Finally, by adding the results given in equations (13.6) and (13.18), the net 
thrust becomes 
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Fromequations (11.16)and(13.1), weeliminatethetikinequation (13.19). This 
gives for the thrust the formula 

(13.20) 

For the case of an infinitely thin plate the thrust reduces to 

Now we can obtain easily that 

z; = ?; - - 2 . 4  + 2&). 

According to this relation it is seen that ?A = 15; for the case e = 0. Hence our 
result is in agreement with Siekmann (1962), observing that 

B, = ( -  l)nB:, Cn = ( -  l)n+lC$, 

where the coefficients B: and C: are those used by Siekmann. 
We want to calculate now the time average value of the thrust over a period of 

Tn = 2n/w. The time average value of an arbitrary function of time SZ (t) is defined 
ZtS 

(13.21) 

Thus 

sin2wtdt = 4, 

sinwtcoswtdt = 0. (13.22) 

Hence, we find for example 

etc., and also 

Next we define B, to be 

nl7AB;:ld.t = 0. 

(13.23a) 

(13.23 b )  

(13.24) 

(13.25) 
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and C, to be 

l W l  
4,=1 n 

= - s - [c;n-z,(c,;-l- CA+,) - qnp2, (c;-l - c;+,, + c;+2(c;+1 - CA-,) 

- CA+,(C;+l- Cl-l)]. (13.26) 

Substituting these results into equation (13.20) and defining a thrust coefficient 

CT = &./=pu2 
by 

we find the time average value of the thrust coefficient CT to be 

CT = (rh + c;) (rh - c;) + ( r i  + ci) ( T i  - C;) + k2(BhB; + BiB';) 

- s[Z(rh - 2AA + ZA;) (C; - Ci) + 2(ri - 2 . 4  + ZA';) (Ci - C;) 

+ 3 (c; c; + c; c; - c;, - c;;z + c;2 + C;,) + r;, + Ti , ]  

- s[kZ(B;B; + B;I B; -Biz- By- B' 0 B' 2-  B"B") 0 2 +k(B*+C*)I, (13.27) 

where = (A; + A ; ) s ( A k )  - (A;  +A';) @(Ah) -A; ,  

r i  = (A;+A';)s(Ak) + (Ah+A;)@(Ak)-A'; .  

14. Numerical example 
I n  order to compare this work with previous results for a very thin plate 

(Siekmann 1962) we take a displacement function with a quadratic amplitude 

(14.1) 
in the form D(z, t )  = ih(x, t )  = i(do + d,z + d2x2) e-jaxejwl. 

Here the phase angle A, is set equal to zero. From equation (11.1) it follows that 

x = (1-€s)cos9+&€. (14.2) 

Combining these expressions with equation (5.1 1)  we get, after some straight- 
forward calculations, 

H f ( 6 )  = [(do + &sd, + &( 1 - s)2d2) (cos iac - j  sin &ae) 

+ ( 1  - s) (d, + sd,) (cos +EE - j  sin iae) cos 9 

+&(1 - e ) 2 d ,  (cos@~-jsin&ccs) ~ 0 ~ 2 6 ] e - j ~ ( ~ - ~ ) ~ ~ ~ ~ .  (14.3) 

Substituting this result into equation (5.15) and employing the integral 

(14.4) 

where K = ( 1  - E) a and J,(K)  is the Bessel function of order n, we obtain after 
some straightforward manipulations the real and imaginary parts of the B,  
Fourier coefficients, 

HT(9)eosn&d8, 
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as follows: 

J .  P. Uldrick and J .  S i ekmann  

BL = [do + +edl + &( 1 - e) ,  d,] cos gae J O ( ~ )  + ( 1  - e) ( d ,  + ed,) sin gae J,(K) 

+ Q( 1 - e)'d2 COS &Ze[JO(K) - 2K-lJ1(K)], (14.5a) 

Bg = - [do + &d, + $( 1 - ~ ) ~ d , ]  sin +xJ,(K) - (1 - e )  (d ,  + ed,) cos Q ~ E J , ( K )  

- 6( 1 - e)  d, sin +X[J,(K) - ~ K - ~ J , ( K ) ] ,  (14.5 b )  

B;,+, = ( - 1)"+l{[d0 + Qed, + +( 1 - ~ ) ~ d , ]  sin QaeJ2,+,(~) 

+ (1 - E )  ( d l + e d , ) c o s ~ a e [ ( 2 n +  ~ ) K - ~ J , , + ~ ( K ) - ~ , , ( K ) ]  
+ I-( 1 - E ) ,  d, sin *ae[ ( 1 - 2( 2% + 1 )  ~ - 2  - 2( 2 n  + I), K-2) J,,+,(K) 

+ 2K-1Jzn(K)I}, ( 1 4 . 5 ~ )  

El,+, = ( - l)n+l{[do + Qed, + &( 1 - e)2d2]  cos &~J,,+,(K) 

- ( 1  - e) (d, + ed,) sin Qac[(2n + 1 )  K-~J,~+, (K)  - J,%(K)] + +( 1 - E ) ,  

x d ,  cos +a€[( 1 - 2 ( 2 n  + 1) K - ~ -  2(2n+ I),K-,) J,,+,(K) + ~K-~J,,(K)]} ,  
(14 .5d)  

Bkm = ( - I)" {[do + &d, + &( 1 - .5),d2] cos &~J,,(K) 
- (1 - e )  ( d ,  + ed,) sin * a s [ 2 n ~ - l J , , ( ~ )  -J,+,(K)] + &( 1 - e),d2 cos i i l e  

X [ I -  2 (2n )  K-'- 2(2n)'K-'JZn(K) +2K-1J2n-l(K)]}, (14.5e) 

Bin = ( - 1)"-l{[d0 + &d, + Q( 1 - e)2d2]  sin +aeJ,,(~) 

+ ( 1  - 6 )  (d ,  f e d , )  cos Q ~ E  [ 2 n ~ - l  J Z n ( ~ )  - J,,-,(K)] + &( 1 - e ) ,  d, sin iae 

x [ ( 1 - 2 ( 2 n ) ~ - 2 - 2 ( 2 n ) ~ ~ - ~ ) J , ~ ( ~ ) + 2 ~ - ~ J , , - ~ ( ~ ) ] } .  (14.5f) 

In establishing these results the foIlowing recurrence relations between the 
Bessel functions have been used: 

and 

From 

we find in a similar manner the real and imaginary parts of the C, Fourier co- 
efficients to be 

C' 0 -  - [ - (1 - e) (d, + ed,) cos frae + K(do + i e d ,  + +( 1 - e), d,) sin $as] J O ( ~ )  

+ [ ~ ( l - e )  ( d , + e d , ) c o ~ + a e + 2 ( l - e ) ~ d , s i n ~ a e ] J ~ ( ~ )  

+ [+K( 1 - e), d, sin +E] [ J O ( ~ )  - 2 ~ - l  J,(K)], (14 .6a)  

G;[ = {( 1 - E )  (d, + ed,) sin $me + ~ [ d ,  + &dl + Q( 1 - e)2 d,] cos & E } J O ( K )  
+ [ - K (  1 - e )  (d, + ed,) sin =$as + 2( 1 - e)2d2 cos 4ae] J,(K) 

+[&K(1 -€)2d2COS@E] [JO(K)-2K-1JI(K)], (14.6 b )  
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CL,+, = ( - I),{[( 1 - s) (d, + sd,) sin &as+ ~ ( d ,  + &d, + &( 1 - s), d,) cos &as]J2n+l(~) 

+ [ - K (  1 - E )  (d, + sd,) sin gas + 2( 1 - ~ ) ~ d ,  cos &as] [(Zn -i- 1) K-,J,,+~(K) 

- J,,(K)] + [&~(1-  s),d, cos &as] [( 1 - 2(2n + 1) lc-, - 2(2n + 1 ) 2 ~ - , )  

x J 2 n + 1 ( ~ )  + 2 ~ - l J 2 n ( ~ ) I ) ,  (14 .6~)  

Ci,+, = ( - 1)"-1{[ - (1 - s) (d, -i- sd,) cos $as+ ~ ( d ,  + $edl + $( 1 - s)2d2) sin gas] ~~ 

x J 2 n + l ( ~ )  + [K (  1 - s)  (d, + sd,) cos Qas + 2( 1 - s) ,  d, sin 4as] 
x [(2n+ l ) ~ - ~ J , ~ + ~ ( ~ ) - J , ~ ( ~ ) ] + [ & ~ ( l - s ) ~ d ~ s i n Q a s ]  
x [(l-Z(Zn+ 1 ) ~ - ,  -2(2n+ 1)2~-2)J2n+l(~)+2~-1J2n(~)]),  (14.6d) 

CLn = ( - I)n{[ - (1 - s)  (d, + sd,) cos 401s + ~ ( d ,  + &sd, + Q( 1 - s) ,d2)  sin 4as]J2,(lc) 
+ [K (  1 - s) (d, + sd,) cos +as + 2( 1 - s), d, sin $zs] [ZnK-l J,,(K) - J2n-l(~)] 

+ [&K( 1 - s)2d2sin 4as] [(I - 2(2n)~-2-  2 ( 2 n ) 2 ~ - 2 ) J , , ( ~ )  + ~K-~J,,_,(K)]}, 
(14.6e) 

Cin = ( - I), {[( 1 - s) (d, + sd,) sin &as+ ~ ( d ,  + Qsdl + &( 1 - s)2d2) cos &as] J,,(K) 

+ [ - K (  1 - E )  (d, + sd,) sin &as + 2( 1 - s), d, cos &as] [ 2 n ~ - l J , ~ ( ~ )  
-J,,-,(K)]+[&K(~ -~)~d ,cos&as]  [ ( 1 - 2 ( 2 n ) ~ - ~ - 2 ( 2 n ) 2 ~ - ~ )  

x J 2 n ( ~ )  + ~ K - ~ J Z ~ - ~ ( K ) I ) *  ( 1 4- 6f 1 
With the coefficients B, and C, known, we find the A ,  coefficients from equa- 

tion (10.7) to be 
1 + E  2€ 

1-28 1-2s A; = - k[(l-C) B;I+ ZCB:]---C;+- c; , 
2s 

A: = L [ ( ~ - E ) B ~ + ~ ~ B ; ] - ~ + C C ; I + ~  1-2s 1-2s  c; 1 

(14.7a) 

(14.7b) 

s 
A; = - k[(l - s )B;  +s(B; +#;)I -% C;+,, (CA + CL), (14 .7~)  1 - 2s 

kl; = k[(l-e)B;+s(Bh+B;)]-*CC;+-- s (Ci+Ci). (14.7d) 
1-2s  1-25 

The numerical values of these coefficients were computed on the IBM709 
Electronic Computer at the University of Florida Computer Center for different 
sets of d, (i = 1,2,3)  coefficients and for several values of the thickness parameter. 
With these values known, the thrust coefficient was computed for the selected 
data. Figure 10 shows plots of the calculations and reported experimental data 
(Siekmann 1962). 

The curve for E = 0 coincides with Siekmann (1962, figure 4). Numerical 
results for five values of thickness parameters are tabulated in table 2. 

15. Conclusion 
Based upon the theory developed and the numerical results obtained, the 

following observations can be made : 
(1) The thickness of the two-dimensional fish tends to reduce the available 

thrust generated by the swimming motion. This phenomenon indicates that a 
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slender fish apparently has more available progressive force in which to 
manoeuvre than does a fat fish of comparable length. Of course, in order to obtain 
the net thrust available the viscous effects must be considered. 

CT 

do = 0.023 
d, = 0.042 
d2 = 0.034 
a = n  

- 0.021 I I I I I 

0 2 4 6 8 10 
k 

FIGURE 10. Thrust coefficient 'L,S reduced frequency for quadratic amplitude. 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

8 = 0.00 
- 0.0044 
- 0.0030 
- 0.0007 

0.0026 
0.0069 
0.0121 
0.0183 
0.0254 
0.0335 
0.0425 

E = 0.05 
- 0.0051 
- 0.0038 
- 0.0016 

0.0016 
0.0056 
0.0105 
0.0164 
0.0231 
0.0307 
0.0392 

E = 0.10 
- 0.0055 
- 0.0043 
- 0.0022 

0.0007 
0.0045 
0.0091 
0.0146 
0.0208 
0.0279 
0.0358 

E = 0-15 
- 0.0058 
- 0.0046 
- 0.0026 

0~0001 
0.0035 
0.0078 
0.0127 
0.0184 
0.0249 
0.0321 

TABLE 2.  Thrust coefficient C,. 

E = 0.20 

- 0.0059 
- 0.0048 
- 0.0030 
- 0.0006 

0.0026 
0.0063 
0.0108 
0.0159 
0.02 16 
0.0280 

(2) The thickness effect is pronounced at higher reduced frequencies than at 
smaller ones. 

(3) The thrust coefficient depends upon all of the Fourier coefficients B, 
and C, for a finite thick fish instead of only two B,'s and Cn's as in the case of a 
fish of zero thickness. 

(4) The argument of the Theodorsen function is increased by an amount 
depending upon the thickness of the fish. This results from the slowing-up effect 
of fluid particles in the wake. 

(5) The present theory yields identical results for lift, moment and thrust 
with existing thin plate theories when the thickness parameter vanishes. 
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